Research on (2+1) Dimensional BKK Equation

Bin Zheng
School of Mathematics and Statistics, Shandong University of Technology, Zibo, China, 255049
Corresponding Author: Bin Zheng

Submitted: 10-10-2021
Revised: 19-10-2021
Accepted: 22-10-2021

Abstract

In this paper, we derive exact traveling wave solutions of ($2+1$) dimensional BKK equation by a presented method.The method appears to be efficient in seeking exact solutionsof nonlinear equations. KEYWORDS:(G'/G)-expansion method, traveling wave solutions, exact solution, evolution equation, nonlinear D-S equation.

I. INTRODUCTION

In scientific research, seeking the exact solutions of nonlinearequations is a hot topic. Many approaches have beenpresented so far [1-6]. In [7], Mingliang Wang propo-seda new method called ($\left.\mathrm{G}^{\prime} / \mathrm{G}\right)$-expansion method. The mainmerits of the ($\mathrm{G}^{\prime} / \mathrm{G}$)-expansion method over the other methodsare that it gives more general solutions with some freeparameters and it handles NLEEs in a direct manner withno requirement for initial/boundary condition or initial trialfunction at the outset. So the application of the ($\left.\mathrm{G}^{\prime} / \mathrm{G}\right)$ expansion method attracts many author's attention.Our aim in this paper is to present an application ofthe ($\mathrm{G}^{\prime} / \mathrm{G}$)-exp-ansion method to $(2+1)$ dimensional BKK equation.

II. DESCRIPTION OF THE(G ${ }^{\mathbf{\prime} / G}$)EXPANSION METHOD

In this section we will describe the (G'/G)-expansion methodfor finding out the traveling wave solutions of no-nlinear evolution equations.

Suppose that a nonlinear equation, say in three indep-endentvariables x, y and t , is given by
$P\left(u, u_{t}, u_{x}, u_{y}, u_{t t}, u_{x t}, u_{y t}, u_{x x}, u_{y y} \ldots \ldots\right)=0$
(2.1)
where $\mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ is an unknown function, P isa polyno-mial in $u=u(x, y, t)$ and its various partialderivatives, in which the highest order derivatives andnonlinear terms are involved. In the
following we give themain steps of the ($\mathrm{G}^{\prime} / \mathrm{G}$)expansion method.

Step 1. Combining the independent variables x, y and tinto one variable $\xi=\xi(x, y, t)$, we suppose that

$$
\begin{equation*}
u(x, y, t)=u(\xi), \xi=\xi(x, y, t) \tag{2.2}
\end{equation*}
$$

the travelling wave variable (2.2) permits us reducing Eq.(2.1) to an ODE for $u=u(\xi)$

$$
\begin{equation*}
P\left(u, u^{\prime}, u^{\prime \prime}, \ldots \ldots\right)=0 \tag{2.3}
\end{equation*}
$$

Step 2. Suppose that the solution of (2.3) can be expre-ssedby a polynomial in ($\mathrm{G}^{\prime} / \mathrm{G}$) as follows:

$$
\begin{equation*}
u(\xi)=\alpha_{m}\left(\frac{G^{\prime}}{G}\right)^{m}+\ldots \ldots \tag{2.4}
\end{equation*}
$$

where $G=G(\xi)$ satisfies the second order LODE in the
form

$$
G^{\prime \prime}+\lambda G^{\prime}+\mu G=0
$$

$\alpha_{m}, \ldots \lambda$ and μ are constants to be determined later, $\alpha_{m} \neq 0$.The unwritten part in (2.4) is also a polynomial in ${ }^{\left(\frac{G^{\prime}}{G}\right)}$, the degree of which is generally equal to or less than $m-1$.The positive integer m can be determined by consider-ing thehomogeneous balance between the highest order de-rivativesand nonlinear terms appearing in (2.3).

Step 3. Substituting (2.4) into (2.3) and using secondorder LODE (2.5), collecting all terms with the sameorder of $\left.{ }^{\left(G^{\prime}\right.}{ }^{\prime}\right)$ together, the left-hand side of Eq. (2.3)is converted into another polynomial in $\left(\frac{G^{\prime}}{G}\right)$

Equatingeach coefficient of this polynomial to zero, yields a set ofalgebraic equation-ns for $\alpha_{m}, \ldots \lambda$ and μ.

Step 4. Assuming that the constants $\alpha_{m}, \ldots \lambda$ and μ

Canbe obtained by solving the algebraic equations in Step 3,
since the general solutions of the second order LODE (2.5)have been well known for us, substituting α_{m}, \cdots and thegeneral solutions of Eq. (2.5) into (2.4) we can obtain thetraveling wave solutions of the nonlinear evolution equation(2.1).

In the subsequent sections we will illustrate the propo-sedmethod in detail by applying it to a nonlinear evolutionequation.

III. APPLICATION OF (G'/G)EXPANSION METHOD FOR(2+1) DIMENSIONAL BKK EQUATION

In this section, we will consider the following ($2+1$) dimensional BKK equation:
$u_{t y}-u_{x x y}+2\left(u u_{x}\right)_{y}+2 v_{x x}=0$
$v_{t}+v_{x x x}+2 u v_{x}=0$

Supposing that
$\xi=k x+l y+s t$
By (3.3), (3.1) and (3.2) are converted into ODEs
$s l u "-k^{2} l u^{\prime \prime \prime}+2 k l\left(u u^{\prime}\right)+2 k^{2} v v^{\prime \prime}=0$
$s v^{\prime}+k^{2} v^{\prime \prime}+2 k(u v)^{\prime}=0$
Integrating (3.4) and (3.5) once, we have
$s l u^{\prime}-k^{2} l u^{\prime \prime}+2 k l u u^{\prime}+2 k^{2} v^{\prime}=0$
$s v+k^{2} v^{\prime}+2 k u v=0$
Suppose that the solution of (3.6) and (3.7) can be expressed by apolynomial in $\left(\frac{G^{\prime}}{G}\right)$ as follows:
$u(\xi)=\sum_{i=0}^{m} a_{i}\left(\frac{G^{i}}{G}\right)^{i}$
$v(\xi)=\sum_{i=0}^{n} b_{i}\left(\frac{G^{\prime}}{G}\right)^{i}$
where $a_{i}, \quad b_{i}$ are constants, $G=G(\xi)$ satisfies the second orderLODE in the form:
$G^{\prime \prime}+\lambda G^{\prime}+\mu G=0$
where $\lambda_{\text {and }} \mu$ are constants.
Balancing the order of $u u^{\prime}$ and v^{\prime} in Eq.(3.6),the order of $v^{\prime \prime}$ and $u v$ in Eq.(3.7), we can obtain
$2 m+1=n+1, n+1=m+n \Rightarrow m=1, n=2$.
So Eq.(3.8) and (3.9) can berewritten as
$u(\xi)=a_{1}\left(\frac{G^{\prime}}{G}\right)^{1}+a_{0}, a_{1} \neq 0$
$v(\xi)=b_{2}\left(\frac{G^{\prime}}{G}\right)^{2}+b_{1}\left(\frac{G^{\prime}}{G}\right)^{1}+b_{0}, b_{2} \neq 0$
(3.12)
$a_{1}, a_{0}, b_{2}, b_{1}, b_{0}$ are constants to be determined later.
Substituting (3.11) and (3.12) into (3.6) and (3.7) and collecting all the termswith the same power of $\left(\frac{G^{\prime}}{G}\right)$ toge-ther and equating eachcoefficient to zero, yields a set of simultaneous algebraicequations as follows:
For Eq.(3.6):
$\left(\frac{G^{\prime}}{G}\right)^{0}:-k^{2} l a_{1} \lambda \mu-l s a_{1} \mu-2 k^{2} b_{1} \mu-g_{1}-2 k l a_{1} a_{0} \mu=0$
$\left(\frac{G^{\prime}}{G}\right)^{1}:-l s a_{1} \lambda-2 k^{2} l a_{1} \mu-k^{2} l a_{1} \lambda^{2}-2 l k a_{1} a_{0} \lambda$
$-4 k^{2} b_{2} \mu-2 k^{2} b_{1} \lambda-2 k l a_{1}^{2} \mu=0$
$\left(\frac{G^{\prime}}{G}\right)^{2}:-2 k l a_{1}^{2} \lambda-4 k^{2} b_{2} \lambda-2 k l a_{1} a_{0}-l s a_{1}-2 k^{2} b_{1}-3 l k^{2} a_{1} \lambda=0$
$\left(\frac{G^{\prime}}{G}\right)^{3}:-2 k l a_{1}{ }^{2}-4 k^{2} b_{2}-2 k^{2} l a_{1}=0$
For Eq.(3.7):
$\left(\frac{G^{\prime}}{G}\right)^{0}: s b_{0}+2 k b_{0} a_{0}-g_{2}-k^{2} b_{1} \mu=0$
$\left(\frac{G^{\prime}}{G}\right)^{1}:-k^{2} b_{1} \lambda+s b_{1}+2 k b_{1} a_{0}-2 k^{2} b_{2} \mu+2 k a_{1} b_{0}=0$
$\left(\frac{G^{\prime}}{G}\right)^{2}:-k^{2} b_{1}-2 k^{2} b_{2} \lambda+2 k b_{2} a_{0}+2 k b_{1} a_{1}+s b_{2}=0$
$\left(\frac{G^{\prime}}{G}\right)^{3}:-2 k^{2} b_{2}+2 k a_{1} b_{2}=0$
Solving the algebraic equations above, yields:
$a_{1}=k, a_{0}=a_{0}, b_{2}=-k l, b_{1}=-k l \lambda, b_{0}=-k l \mu$
$k=k, l=l, s=k^{2} \lambda-2 k a_{0}, g_{1}=g_{2}=0$
Where a_{0}, k, l are arbitrary constants.
Substituting (3.13) into (3.11) and (3.12), yields:
$u(\xi)=k\left(\frac{G^{\prime}}{G}\right)+a_{0}$
$v(\xi)=-k l\left(\frac{G^{\prime}}{G}\right)^{2}-k l \lambda\left(\frac{G^{\prime}}{G}\right)^{1}-k l \mu$
where $\xi=k x+l y+\left(k^{2} \lambda-2 k a_{0}\right) t$.
Substituting the general solutions of (3.10) into (3.14) and(3.15), we have:

When $\lambda^{2}-4 \mu>0$
$u_{1}(\xi)=-\frac{k \lambda}{2}+\frac{k \sqrt{\lambda^{2}-4 \mu}}{2}$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}\right)+a_{0}$
$\nu_{1}(\xi)=\frac{k l \lambda^{2}}{4}-\frac{k l}{4}\left(\lambda^{2}-4 \mu\right)$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi+C_{2} \sinh \frac{1}{2} \sqrt{\lambda^{2}-4 \mu} \xi}\right)^{2}-k l \mu$
where $\xi=k x+l y+\left(k^{2} \lambda-2 k a_{0}\right) t, a_{0}, k, l, C_{1}, C_{2}$ are arbitrary constants.
When $\lambda^{2}-4 \mu<0$
$u_{2}(\xi)=-\frac{k \lambda}{2}+\frac{k \sqrt{4 \mu-\lambda^{2}}}{2}$.
$\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}\right)+a_{0}$
$\nu_{2}(\xi)=\frac{k l \lambda^{2}}{4}-\frac{k l}{4}\left(\lambda^{2}-4 \mu\right)$.
$\frac{\left(\frac{C_{1} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}{C_{1} \cosh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi+C_{2} \sinh \frac{1}{2} \sqrt{4 \mu-\lambda^{2}} \xi}\right)^{2}-k l \mu}{}$
where $\xi=k x+l y+\left(k^{2} \lambda-2 k a_{0}\right) t, \quad a_{0}, k, l, C_{1}, C_{2}$ are arbitrary constants.
When $\lambda^{2}-4 \mu=0$
$u_{3}(\xi)=\frac{k\left(2 C_{2}-C_{1} \lambda-C_{2} \lambda \xi\right)}{2\left(C_{1}+C_{2} \xi\right)}+a_{0}$
$\nu_{3}(\xi)=\frac{k \lambda^{2} l}{4}-\frac{k l C_{2}{ }^{2}}{\left(C_{1}+C_{2} \xi\right)^{2}}-k l \mu$
where $\xi=k x-\frac{3 b_{1}^{2}}{2 k} t, \quad a_{0}, k, l, C_{1}, C_{2}$ are arbitrary constants.

IV. CONCLUSION

The main points of the $\left(\mathrm{G}^{\prime} / \mathrm{G}\right)$-expansion method are thatassuming the solution of the ODE reduced by using thetraveling wave variable as well as integrating can be expre-ssedby an m-th degree polynomial in ($\mathrm{G}^{\prime} / \mathrm{G}$), where $G=G(\xi)$ is the general solutions of a second order LODE.The positive integer m is determined by the homogeneousbalance between the highest order derivatives and nonlinearterms appearing in the reduced ODE, and the coefficientsof the polynomial can be obtained by solving a set ofsimu-ltaneous algebraic equations resulted from the processof using the method. Furthermore the method can also beused to many other nonlinear equations.

REFERENCES

[1]. M. Wang, Solitary wave solutions for variant Boussinesqequations, Phys. Lett. A 199 (1995) 169-172.
[2]. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitarywave solutions for nonlinear Hirota-Satsuma coupled KdVequations, Chaos, Solitons and Fractals 22 (2004) 285303.
[3]. L. Yang, J. Liu, K. Yang, Exact solutions of nonlinear PDEnonlinear transformations and reduction of nonlinear PDE toa quadrature, Phys. Lett. A 278 (2001) 267-270.
[4]. E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, Group analysisand modified tanh-function to find the invariant solutions andsoliton solution for nonlinear Euler equations, Int. J. NonlinearSci. Numer. Simul. 5 (2004) 221234.
[5]. M. Inc, D.J. Evans, On traveling wave solutions of somenonlinear evolution equations, Int. J. Comput. Math. 81 (2004)191-202.
[6]. M.A. Abdou, The extended tanh-method and its applicationsfor solving nonlinear physical models, Appl. Math. Comput. 190 (2007) 988-996
[7]. M. Wang, X. Li, J. Zhang, The (G'/G)expansion method and travelling wave solutions of nonlinearevolution equations in mathematical physics. Physics LettersA, 372 (2008) 417-423.

